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ABSTRACT

A linearized theory is developed for the motions of a
slender body of revolution, with vertical axis, which is fioat-
ing in the presence of regular waves. Egquations of motion
are derived which are undamped to first order in the body
diameter, but sccond-order damping forces are derived to
provide solutions valid at all frequencies including resonance.
Calculations made for a particular circular cylinder show
extremely stable motions except for the low frequency range

where very sharp maxima occur at resonance.

o

INTRODUCTION

’I‘He motions of a vertical body of revolution, which is floating in the
presence of waves, present a problem of interest in several connecticns®
The motions of a spar buoy, of a wave-height pole, and of iloating rocket
vehicles arc important e'xamples of such’a problem. The same methods
developed for these motions may be applied to find the forces acting on
offshore radar and oil-drilling structurcs.

A theoretical discussion of thig problem, which also trcats the sta-
tistical problem of motions in irrcegular waves, has been presented by
Barakat.! However, this analysis is restriclted to“the case of a circular
cylinder and is based upon several semi-empirical concepts of a{aplif:d
ship-motion theory. An alternative procedure is toformulate the {inviscid]
hydrodynamic problem as a boundary~value problem for the velocity po-
tential and to employ slender-body techniques to solve this problem. The
latter approach is followed in the present work, leading to linearized equa-
tions of motion which may be solved for an arbitrary slender body with a
vertical axis of rotational symmetry. The particular case of a circular
cylinder, whose centers of buoyancy and gravity coincide, is treated in

detail and curvces are presented for the amplitudes of surge, heave, and

'References are listed on page 27.
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pitch oscillations

In deriving the hydrodynamic forces and moments acting on the body,
we shall assume that the incident waves and the oscillations of the body are
small, and thus we shall retain only terms of first order in these ampli-
tudes. We shall also assume that the body is glender. The analysis with
only first~order terms in the body®s diameter leads to undamped resonance
oscillations of infinite amplitude. To analyze the motions near resonance,
it is necessary to introducc damping forees which arc of sceond order with

respeet to the diametez~length ratio.

THE FIRST-ORBER VELQCITY POTENTIAL

We shall consider the hydrodynamic problent of a f,Ioatfmgﬂ slerdeg
body of revolution with a wertical axis in the presence of small incident
surface waves., et (xﬂy‘, z} be a fixed Gartesian coordinate system with
the z-axis positive upwards and the plane z 4 0 sitwated at the undisturbed
fevel of the free surface, The xnaxis is taken to be the dixrection of propa~
gation of the incident wave systesy, and the motion of the body is assumed
eé be confined to the plane y = 0. We shall alse empioy a goordinate sysa
gem {[x*,y7.2") fixed in the body, with z” the axis of the body, so that with
the body at;lxe‘sf., {x,v-2) = [x',y". 2"); and a cigeular cylindrical system

fr.0.2z), where x =r ces 0 and y = v sin 0. If £, £, and p are the instane

"taneowss amplitudes of surge, heave, and pitch, respentively, relativesto

“the body's conter of gravity. it follows that

%A bt R ews ot {27 = 25) sin b

o 0 )

0 yey o {1}

0

22 & e X sinyt §z° = z“é? eos O & 7°ﬁ

o

o 9o
[e] ° °
whepe zge is the vertical enordinate of the genter of gravity in the bodype
fixed system; sec Pigure 1» The displagements {, £, and | are asswmed
to be small escillatery fungtions of times we shall consistently Jinearize
by neglegting terms of second ovder in these functions ay their products

with the incident wave amplitude Ao, Thus Hqeation [1] may be replaced by

0
-

O
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Figuze 1 » The Coordinate Systems

E
hid

§+x"+(z‘”*zG)\p

o ; vEYy [2]

L~ x+ 2z

Z

i dhnideal ingompgessible fluid §s assurmed, there exists a velocity
poteﬁtiai: ®(x.y.2,t), satisfying Laplace”s equation, such that its gradi-
ent is enua}l to the velocity of the fluid, This function must satisfy the

following boundary ¢enditionsy N

{11 On the body, the normal velocity component of the hody must equal
the normal derivative of &, For a body of revolution defined by the equa-
tion r' =R(z°}, where "= J}::Z + y‘z, this boundary condition may be
expressed by the equatéonz“ K

0 il




ot [3]

(2) On the free surface, the normal velccity component of the free
surface must equal the normal velocity component of the fluid particles
in this surface, and the pressure must equal atmospheric pressure. In

the linearized theory, these conditions reduce? to

2
o-d 0d

- 4
o2 T8 52 0 [4]

or in the case of a sinusoidal disturbance with frequency w,

8
—— = = 5
K® 52 0 on 2= 0, [5]

where K = wzlg.

{3) At infinite distance from the body, the waves generated by the body

are outgoing (the radiation condition).

The free surface condition, Equation [5], and the radiation condition
are satisfied by the potential of oscillating singularities beneath the free
surface; the boundary condition on the body may be satisfied by a proper
distribution of these singularities. This distribution may be found {rom
slender-body theory but some care is required in linearizing the present
problem. If r'= R{z') is the equation of the body surface over its sub-
merged length (-H < 2'< 0), we shall assume that R and its first deriva-
tive are continuous, that R{(-H) = 0, and that the magnitude of the slopec
‘dR/dz'|<< 1. The depth H is assumed {inite, and it follows that R is
small of the same order. «s dR/dz'. In the analysis to follow we shall
also reguire that R be small compared to the wavelength of the incident
wave system, or that KR << 1,

We wish to obtain the velocity potential of leading order in the small
parameters of slenderness and oscillation amplitudes in order to obtain a
consistent set of linearized equations of motion for the body. However,

it will turn out that the potentials of different phases of the motion are of




differcnt orders of magnitude with respect to the slenderness parameter.
For example, the potential due to surge or pitch is of order R as R — 0,
whereas the potential due to heave is 0 (RZ). Similar differences will oc-
cur in considering the components of each potential which arc in phase
and out of phase with the respective velocities of the body. In order to
circumvent these difficulties without unnecessary higher order perturba-

tion analysis, we decompose the velocity potential in the following form:

Dx,y,z;t) = ¢g(x.y,z;t) + ¢§(x,y,2;t) + d?q,(x,y, z; t)

[6]
+ A [g/m eKz cos (Kx - wt) + ¢A(x,y, z;t)]

where ¢f; ) ¢T: , and % are linear in the displacements (§,¢ , ¢) and their
time derivatives, respectively. The potential A g/uw K2z cos (Kx - wt)
represents the incident wave system and the potential Adp (x,y,2z;t) re-
presents the diffracted wave potential, corresponding to waves incident
on a reslrained body. Each potential ¢ in Equation | 6] must satisfy the
free surface boundary condition and the radiation condition; the complete
potential ® mugt salisfy the boundary condition on the body. This condi-
tion, Equation [3], is reduced as follows:

0

(5p+V% - ) |et - R (a)] = Q5L 2L, 0x' Byl or! Pzl AR pa!
AL

ox' ot dy' ot dz' Ot dz' ot

N od a0 dR

= 0 on r' - R{z"),
or'  9z' dz! ’ (=)

o
or neglecting second-order terms in A, £, {, and

== === 1E+ (z~25) ] cos 0 +(L - xp)dR/dz = 0
T : [7]

on r = R{z), .
2
where a dot denotes differentiation with respect to time, Substituting
FEquation | 6] into Equation [7] and separating terms according to their
dependence on different displacements. we ohtain the following boundary

conditions on the body:




8¢§ . Bd’g . .
— =§cosf)+0(R ) [ 8]
or dz
' 2
—— —_ —_— +
. iz ZG)COSB+O(R Bz) 0(R%) [9]
a¢ R 9
.k +0(R t“) [10]
ar 0z 0z
ddp
— = - weKz [cosB sin wt—(KR cosze + 25)cosmt]
or dz
9¢
+ O(R --“}-)+ 0(R2)
Jdz
[11]
= welZ [— cos 0 sin wt +(% KR +%—R—+ 1 KR cosZS)COSmt]
7
Odp 2 o
+ O(R )+ 0(R“)
0z ol

Q

To satisfy the above %oundary conditions, we employ slender-body
theory.®> For exampie, the potential satisfying Equation [8] is an axial
line of herizontal dipoles. of moment density 3 g [R(z)]2 per unit length.

Thus in an infinite flniqd,

_a1: (O 12 D 2 2172
bg = 5 & Jin IR(zl)] T [r + (z - 27) ] dz.1 [12]

To satisfy the free surface and radiation conditions, we substitute
—l -
for the source potential [r2 + (2 - zl)z] ?, the potential of an oscillating
source under a frec surface.”? With this substitution we obtain. in place

of Equation [12]:

w
+ f kK klztz) Jo(kr)ak}dz,, §13}
0 k~-K >

ox

)

0
n mng [R(z))]% B2 210 2a g (Ke1] da,
-H a




and, in a similar fashion,

(SIS

= 1) 0 2 ) a 2 24"
by =2V T |R(z))] (ZI“ZG)B—X— [r +(z - 2))7]

[es]
PR+ K k(z+z) )
+ :{o tE 1 JO(kr)dk}dle [14]

0
F TR J' [R (2))1% (2] - 2;) eK(“Zl)[:_x JO(Kr)}dzl

1

- 2 2
= t"f R(Z c.zl [r +(z-—zl)]

fes]
k+K k{z+z
+f TR © (= l)JO(kr)dk} dz, [15]
° 0
+1rwi§{,f dR HKlztz) Jy(Kr)dz,
z)

0
¢A:_%mf RS ( KR+1&)Rcoswt
“H d

1
+ RZ s1nwt§—+ 1RR% coswt —-—-}{ {z - zl)z] 2
x

[16]
k+K k(z+z1)

R (kr)dk} dz,

0 + 2
—wwKQJ’ e (z+22z) ( KR+—— R sinwt

» - R% cos wt-8—+ 1 KR S1nwt—a— (Kr)dzl
sz

where denotes the Cauchy principal value, From the Appendix we see
that the potentials [13] to [16] satisfy the boundary conditions [8] to [11],
respectively, with a maximum fractional error of order R. Unfortunate-

-7 ly, this error is not so small as in the classical slender-~body theory for
an infinite fluid, where the error is of order RZ log R; for this reason

the (iaresent theory may rot hold for as wide a range of slenderness as in

7




the aerodynamic case. However, for the slender floating bodies which
are envisaged at present (viz., a rocket vehicle or one support of a stable
platform), this is not expected to cause practical problems.

The values of the potentials [13] to [16] on the body may be found
by setting r = R(2) and retaining the leading terms for small R. To lcad-
ing order, only the singular term [r2+ (z - 21)2]_% contributes to the in-
tegrals over z;, and the integrals may be evaluated directly since for

any continuous bounded funclion [{%)) and small values of r,

0 1
f f(zl)[r2+(z—zl)2]_Z dz| = -2f(z)logr + 0(1)
-H
0 21
J f(zl)_a—[12+(z—zl)2] dr]zl”—Zf( )c050+0(1)
-H 0x

0 2 _1
f f(zl)a—[r2+(z—zl)2] Zdzlzzf(—z—) cos 20 + 0(1)

Py

-11 ax2 re

for -H< z <0, r << H.

Thus on the body,

by = £ R(z) cos 0 + 0(R?) [17]
by = - b R(2)z - zg)ens 0+ 0(R?) (18]
b = -1 R $x log R + 0(R?) [19]

bp= wekz [($ KR + —g-l—:-)R log R cos wt + R cos0 sin wt] + 0(R2)

[20]
= weR% R cos B sin ot + O(R2 log R)




THE FIRST-ORDER FORCES AND EQUATIONS OF MOTION

From Bernoulli's equation, the linearized pressure on the bodv is

= = p 3% oy '
p at pg o [+3
84’& 3¢4J 8113 A 8¢A N Kz . KR 0 t)
= p— -— - - — O —
PE2 " P%e " P T PTar TP [ gp- v ge T sin(KR cos © J

= pgz + "R(z)cose + ”R(z)(z - z~)cos 6 - )AwZeKZR cos 0 cos wt
g P P G F

-

+ pgAeKzosin wt = pgAKeKZR cos O cous wt + O(R2 log R)

Kz

= - pgz t p‘g’R Ycos O + ppR(z)lz - zg)cos B + pgAe sin wt

“o

- 2pw?Ac®?R cos0 cos wt + O(R? log R) [21]

The ferce and moment exerted on the body by the fluid are obtained

by integrating the pressure over the surface. In the absence of any other

external forces, the force or moment must equal the respective accelera-

tion times the mass or moment of inertia of the body. Thus, with % the

unit normal vector into the body, the equations of motion are

m{ = [[ pcos(n,x)dS [~2]
m(t + g) = [] p cos(n,z)ds o 123]
= [Jpllz —zglcos(n,x) - x cos(n,z)]ds |24]

where m is the body's mass, I its moment of inertia about the center of
gravity, and the surface integrals are over the submerged surface of the
body.

In computing the pressure integrals over the body surface, it is ex-
pedient to employ the (x',y',z") system, fixed in the body. The direction

cosines are

u




cos(n,x') = - cos 6 + O(RZ)

cos{n,2') = :—137 + 0(R?)
z

(]

and the forces along the (x,z) axis are related to the forces along the
{x',2z') axis by

Qo .

F sF cos$tF psing=F_ +§F_ + 0 (w2)
2

F, )

1!

F i cos y=F i sing=F_~¢ F+ 0y

Thus the equations of motion may be written in the form

) S R ”
mé = f J (- cos 6 + ¢ = | pRdz'do’ o
0 Y-H dz )
. 27 C*-Q:r x'LlJ
m(l+g) = J.O fH (g—zR,+¢cos 8) pR dz' 4o’
w 27 AU x'y
Ty = fO f u [(z'- zG) cos(n,x') - x' cos(n,z')] pRdz'de'

21 PR XY
- f f (z' - zg)cos 8 pRdz'do' + O(R3)
0o Yo

where t* is the free surface elevation at the body. Substituting Equation
[21] for the pressure and neglecting second-order terms in the oscilla-

tory displacements £, {, y, and A, we obtain

" gm0 dR
mé =—pgf J- (—cos 9'+g|;———'-) (z'+ ¢ - ¢yR cos 6')Rdz'de’
0 _H dz

2w A0 .
- pf f cos 8' [ER cos 6' + |R(z - z5) cos O'
0 -H
2

1 1
+ gAe]KZ sin wt = 2w Ael? R cos 0' cos wt] Rdz'40'

10




. 0
= - 7pg J’ (¢R+2\pz' g&I)Rdz'
-H z

/

0

- pw J‘ [t; + {]:;(z'— zg) ~ ZwZAeKZ‘
-H

cos wt] R% dz'

or, since

o 0
J (¢R+ 2yz! drR )R dz' = ¢ J R z')dz'=0
-H dz u dz

it follows that

°

0
mE = - p J‘ [£ + iz - 2¢) - 202Ae5% cos wt] S(2) dz + 0(R> log R)
-H
[25]
where
_ 2
S(z) = 7 [R(z)]
is the sectional area function.
In a similar manner we obtain
. 0 ds
m({+g) =~pgtlS(0)+°%g f S(z)dz + pgA sin wt [ X2 22 g4z
-H J-11 dz
4
+ O(R" log R) [26]

1¢ ——pg¢f (= = z¢) S(z)dz

0
-p f [é“’l'J;J(Z‘ZG)-ZwZAeKZ COSwt](Z—ZG)S(Z)dZ

+ 0(R3 log R) (27]




From Archimedes' principle, or equivalently, satisfying Equation
[26] to zerc order in L,

0

gm = pg J S(z)dz 128]
-H '
and thus
v 0 dS
mi s - pgr5(0)+pgasinue [ o= Barro@tiogr) (29
-H

while, from Equations [28] and [25],

0 )
2mf = - p f [z - 25) - 20%Ae™? cos wt] S(z)dz + 0(R> log R)  [30]
-H

Let us denote:

I = mk'é
X = — - =T Vertical Prismatic Coefficient
pHS(0)
P 0 n
P, = L f (z - 25)" S(2)dz (n=1,2)
-H
P 0 K n
0 (K) = = fH e z(z—zG) S(z)dz (n=0,1)

and note that £, {, and ¢ must be sinusoidal with frequency w. The

equations of motion then become

2g+P1¢=-—2AQO cos wt [31]

{1 - XKH)t = Al - XKHQ() sin wt [32]
2 "1

(P2+ky—?)¢+ Plf:‘, =-2AQ; coswt [33]

12




Note alsc that surge and pitch are coupled, unless P’1 = 0 or unless
the centers of gravity and buoyancy coincide,

The above equations of motion are not unexpected. The restoring
forces on the left-hand side consist of hydrostatic and inertial forces plus
entrained mass terms which do{lble the inertial force at each section,
This might have been deduced as a consequence of slender-body theory
and the fact that the entrained mass of a circular cylinder in an infinite
fluid is just equal to the odi.qp]ared mass, Tn other words, the hydrodynam-
ic forces on the left-hand side of Equations [31] to [33] could have been
obtained by neglecting the presence of the free surface. Moreover, the
exciting forces on the right-hand side of these equations are those which
follow from the "Froude-Krylov' hypothesis that the pressure in the wave
system is not affected by the presence of the body. These results are, of
course, a consequence of the fact that the body is slender.

The solutions of Equations [31] to {33] are

1 - XQOKH
{ = A sin wt (—) | 34]
1 - XKH
2
rPQ -Q,(P, + k —PI/K)
£ = 2A coswt | —— 022 Y > [35]
L 2(142+ ky—Pl/K)~-PI
r P1Q() -2
W = 2A cos wt > > } |36]
L Z(P2 + ky - PI/K) - Pl
We note that when
1
K= —— 37
x0T 137]
there is resonance in heave, and when
Py
K = [38]

2 1L 2
P2+ky—-2-Pl

13




there is r=sonance 1n pitch and surge. To determine the oscillation am-
plitudes in the vicinity of these resonance frequencies, it is necessary to
consider the damping mechanism due to energy dissipation in outgoing
waves. Thus, for these frequencies, we must consider the free-surface
effects on the restoring forces. For this purpose we must retain some

terms which are of second orde: in the radius of the body.

THE DAMPING FORCES

The damping forces will follow by considering the last terms in
Equations [13] to [16] and will consequently be of higher order in R than
those terms which we retained in the previous analysis. This procedure
is nevertheless consistent, since at resonance the lower order restoring
forces vanish. In other words, we are retaining the lowest order force
or moment of each phase separately. For a further discussion of thies
point, see Reference 4,

We proceed, therefore, to study the damping forces, or the forces
in phase with each velocity. The only contribution from Egquations {[13]

to [16] is the potential

‘ O o
b = 7 KelS? J.H '{QR,S% FlE 4z - zG)]RZ;;} 1 3, (Kr)dz
[39]

Since JO(Kr) =1 - % (Kr)2 + ..., it follows that on the surface r = R{z),

the leading terms are.

it

Jg (Kr)

and

i)

e O(Kr)%’—lex= —%KZROCOSS

2

-

Thus, to second order in R the damping potential on the body is

14




0
d* = 7w Kel? f {C,R R
_H dz,

-z let ez - z0)] KZR(z)Rz(zl) cos 9} R dz,

[40]

0
=1 oKel2yg j H271 45 gy,
- -H dzl

0 K
-%wK3R(z) cos 0 K2 f [g+¢(zl—zG)]e Z] S(zj) dz,
-H

The damping pressure on the body is

E3
L A S f Kz) 45 g4,
t d
-H Z

Then the heave damping force is

.0 2r . 0 2z
F¥ = j f p*R dR 40dz = - 1 wpKt f oKz 95 4, [42]
z “H Y0 d -H dz

zZ

Similarl'y, the surge damping force and the pitch damping moment are

)

* 0 2m
Fi =—J j p*cos O Rdb dz
0 43]
o 1 sf(° Kz O L Kz
= -z wpK <J' Siz)e dz I [£ + q;(zl- zG)]e 1S(Zl)dzl)
-H -H
and

15




M;‘ = - [TJ p*(z—'zG)cosS R do dz
-il -0
5 f 0 K
= -1opK (J. (z - z5)S(z)e Za > [ 44]

{0 K
\f-H [& +'~P(Zl‘ ZG)] e ZlS(Zl) dzl)

or in terms of the integrals Pl, PZ’ QO, and le

FY = - LopKE[K 2 0,(x) - 501
¢ 45
o meK K) vK 2 4]
sk ) unnz - \ ¥
rE - - 3230, () [E g (K) 4§, (X)) 46]
% 1 wm? .
e K30 (K) [£Qy(K) + 0, (K)] [47]

In place of Equations [31], [32], and [33], we obtain the damped equa-

tions of motion

@

28+ Py = - 2AQ4(K) cos wt
m [ 48]
tIgs K7Q () [£ Qo (K) + §Q,(K)]
(1 - xKH){ = Asinwt[l -XKHQ,(K)]
: » [49]
1 m K{ 2
vy Ve [1 - Q,(K)XKH]
W(P, = P /K KO+ P e = - 24 Q)(K) cos wt
m [50]
+ 1 KO0 (K EQg(K) + 40 (K)]




The damping terms of these equations of motion are given by the terms
linear in the velucilies é,, f:, , and qJ It should bLe noted that for a slender
body m — 0, and thus the damping coefficients will be small, as was to be
expected. To solve theseﬁequations for the three unknown displacements
and their phases is a straightforward but tedious matter. For applications
in ranges not including a resonance frequency,. it is much simpler to em-
ploy the undamped equations of mot;on, 13i] to [33], and the resulting

displacements, [34] to [36].

o |

CALCULATIONS FOR THE CIRCULAR CYLINDER

As a special case, we shall consider the circular cylinder R(z) = R

= constant, Then

o

X =1.0
1 0
P1=——J (z—zG)dz*—éH—zG
-H
1 2 2
PZ:EJH(Z'ZG) dz = JH" + Hzg + 2
1 0 K 1 KH
z - _ -
Qp(K) = 5 I-H e dz KH“ e )
1 0 K 1 -KH 1 -KH
QI(K)=— j e Z(z—zG)dz=.——e _..,é__(l_.e )(1+KZG)
H )y K K“H

We shall assume, raoreover, that the centers of buoyancy and gravity co-
incide, or zg = - H/2, so that the equations of motion are uncoupled and

there is no resonance in pitch or surge.

Then

. H* S T
P =70;  Py=i=i Q(K) = - ;
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and it follows that

£ =-—2L(l-—e'KH)c03wt [51]
‘Jf”_‘-gé cos wt [l+e—KH_l—e—KHJ [52]
H kyy? g 2KH (KH)2

(&) %]

= 24 e"RM - 5 [(1 - KH) sin ot
(1 - KH)2 +[1 KH (5) e“ZKH]
. 2 H
[53]

Plots of the above amplitudes and the heave phase angle are shown
in Figures 2 to 6 as functions of KH. Figure 2 shows the ratio of surge
amplitude to wave amplitude. For zero frequency this ratio is one and
for increasing frequencies it decreases monotonically to zero. Figure 3
shows the ratio of pitch angle to the maximum wave slope KA. multiplied
by the coefficient C = 1+ b(ky/H)Z. This coefficient is equal to one if the
mass in the cylinder ig uniformly distributed throughout its submerged
length. The ratio starts at one for zero frequency and decreases mono-
tonically to zero. Thus the pitch amplitude is always less than the wave
slope. Figure 4 shows the ratio of heave amplitude to wave height for
frequencies away from the vicinity of resonance. Near resonance, the
amplitude is shown in Figure 5 and the phase angle in Figurc 6 for the
particular case R/H = 0.1. The ratio of heave amplitude to wave ampli-

tude is unity for zero frequency, rises to a maximum of

2
-‘3(5) §0.865(E)
T\R R

at the resonance frequency KH = 1, and then decreases monoctonically to

2

zero, The phase angle is similar to conventional one-degree-of-freedom

19
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harmonic oscillators with linear damping; for low frequencies the heave
displacement and wave height are in phase, at resonance they are in quad-

rature, and at high frequencies they are 180 deg out of phase.

DISCUSSION AND CONCLUSIONS

The damped equations of motion as given by Equations [48] to [50]
may be solved for an arbitrary body of revolution to obtain the oscillation
amplitudes and phases. Except in the vicinity of the resonance frequencies
defined by Equations [37] and [38], it should be sufficient to use the sim-
pler undamped equations; the resulting oscillations are given by Equations
[34] to [36]. Plots of these oscillations are shown in Figures 2 to 6 for
a circular cylinder, with the important restriction that the centers of buoy-
ancy and gravity coincide. If this restriction is relaxed, a resonance will
be introduced into the equations for pitch and surge, but the frequency of
this resonance may be kept small by ballasting. The amplitudes at reso-
nance are extreme, but the resonance frequency for heave is quite small

and can be kept out of the practical range of ocean waves by making the

21




draft sufficiently large. It would seem wise to do this in practice and to
provide appropriate ballast so that the pitch resonance occurs at or below
the heave resonance frequency. ¥From Equations [37] and [38] this re-

quires that

P, + k

<N

2
The advantage of spar-buoy-type bodies lies in their very small

motions in the higher frequency range. By proper design this advantage

may be utilized; thus very calm motions can be expected in waves.
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APPENDIX

Here the potentials ¢E’ ¢t; , ¢Lp’ and ¢4, defined by Equations [13]
to [16], are shown to satisfy the boundary conditions |8] to [11], respec-

tively, to leading order in R. For this purpose, let us consider the po-

tential
0 8f(z1, -1
¢=éf {lr+Z—z1)]
-H
"® K+ K k(z+z)
+f k+ K k(z leJO(kr)dk}dzl [54]
o k-K

0
+ ij £(z,,0) K(ET 2 Jp(Kr)dz,
-H

where f(zl,t) has sinusoidal time dependence with circular frequency w.
By appropriate choice of the function £, the potentials ¢, ¢€ , ¢¢, and
¢ can all be obtained from { and Y/ 0x. Thus it is sufficient to estab-

lish that the following conditices are satisfied on the body surface r = R:

oy 1
oo - —(ﬁf(z ,t) [55]

82¢ cos O
or 9x R2

11

— f(z,t) 156]

Employing an alternative form of the source potential,? we write §

in the form

0 _1
N R (Rt R BT

@
+ 2K f 1 ] ek(Z'l‘Zl) Jo(kr)dk} dzl
0 k- K
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[57)
p(Kr)dz, continued

= 4yt
where
0 ot (2 2h L 2 -
iy = 1 El{[r +{z, - 2)"] “H[r" 4+ (2, +2)7] }dzl
J—H 8t 1 l

~ D
of 1 ek(z+ z1)

Kr)dz

O( 1

0
by ToK f f(zl’t) eI{(Z'i-Zl)J
-H
The potential §; corresponds to an axial distribution of simplec sources
together with an image distribution above the free surface z = 0. To

emphasize this fact we write y, in the torm

H 1
) 2 2 2,73
4‘1 = 3 J—H -a-tj-f(-lzll,t)[r t+(z - zy) 1 ‘ dz, [58]

From the conventional slender-body theory of aerodynamics, we may ex-
pect this potential to satisfy the boundary conditions [55] and [56] on the
body to leading order in R. In fact, differentiating with aspect to r and
neglecting terms which are of order R% or R cos 0 in the neighborhood

of the body r = R, we have

anl
ar

[591]

12
t
[
oy
1
N
-
-~
e—
a1
=
+
N
{
3]
—
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ot z -z st 1591
_ 55_ continued
’ T N/ 2+ (z - = )2
; 17 -H
!
i
~ 1 0f
T r 8t
and similarly
2 ;
akpl,b_,cosﬁg [60] |

dr 9x ré ot

Thus on the body the potential | satisfies the conditions [55] and [56] to
leading order in R. To establish that the same is true of i, we now show
that the contributions from {5, and aLLIZ/aX .»e of higher order in R.

Since

0
e Jo(kr) = —le(kr)
it follows that
aLlJZ O =0 .
— = - K f ﬂ f k ek(.&+zl)J1(](r)ddel
or -H 8t 0 k- K
. [61]
+ K2 f(zy.0) 22 1 (Kr)as
We wish to show that
— = 0(f
or (£)

and
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as R~ 0, and thus that

2 v
3y A . 3% 4y 3% Wy
< <<
ar or an or 0x or 0x

for R/H<< 1. From the series expansion of the Bessel function,

3r3)

Jl(kr) = %_—kr + 0(k
and thus, where this expansion is permissible in Equation [61], the re-
sulting terms are clearly of order fK. However, in the neighborhood of
z = 0, the power series expansion is not permissible in the integral over

k. It follows that, in the neighborhood of r = R,

oy 0 o
2 2f(0,t) f k kz
= - K — - 1 kr)d
or REY f_H ) K-k © 0 Jilkridids

+ 0(fR)

IR

af{0,t) @ 1
-K = _— Jl(kr‘,dk

i
1
=

o g 250 |
= - K — 0(f)

Similarly,

Thus, onsthe body,

84}2 aLlJl
o[r )
or A Ir
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and

Y

- = 0
3r 0x Jr dx

‘1’2 ] 82 Lbl
% Frox)

Therefore, the potential § satisfies the conditions [55] and [56] with a

fractional error of order R.

REFERENCES

1. Barakat, Richard, "A Summary of the Theoretical Analysis of a
Vertical Cylinder in a Regular and an Irregular Seaway, ' Reference No.

57-41, Woods Hole Oceanographic Institution (Jul 1957), Unpublished
Manuscript.

2. Wehausen, J.V., "Surface Waves, ' Handbuch der FPhysik, Springer
Verlag, Section 13 (1961).

3. Lighthill, M.J., "Mathematics and Aeronautics," Journal of the

Royal Aeronautical Society, Vol. 64, Neo. 595 (Jul 1960), pp. 375-304.

4. Newman, J.N., "A Linearizec Theory for the Motions of a Thin

Ship in Regular Waves,' Journal of Ship Research, Vol. 5, No, 1 (1961).

27




Copies

10

INITIAL DISTRIBUTION

CHBUSHIPS

Tech Lib (Code 2]10L)

App! Res (Code 340)

Des, Shipbldg, & Fleet Maint (Code 400) -
Prelim Des (Code 420)

Sub Br (Code 525)

LCOR B.l. Edelson {Code 3614)
Oceanography (Code 342C)

CHBUWEPS
1 Aero & Hydro Br (Code RAAD-3)
1 Capt. Freitag (Code 45)
1 Mr. Murri (Code RTSV-13)
1 Dyn Sec (Code RAAD-222)

CNO (Op-76), Attn: LCDR Duncan

CHONR
1 Nav Applications (Code 406)
1 Math Br (Code 432)
2 Fluid Dyn (Code 438)

ONR, New York

ONR, Pasadena

ONR, Chicago

ONR, Boston

ONR, London

CDR, USNOL, White Oak

DIR, USNRL
1 Ms. Faires (Code 5520)

COR, USNCTS, China Lake
COR, USNOTS, Pasadena

COR, USNAMISTESTCEN
Attn: Mr. Eberspacher (Code 5610)

CDR, PACMISRAN, Point Mugu, California
Attn: Mr. W.L. Mackie, Consultant (Code 4110-1)

CDR, DDS, Attn: TIPDR

—_ s ) e

/

DIR, Natl BuStand
Attn: Dr. G.B. Schubauer

DIR, APL, JHUniv
DIR, Fluid Mech Lab, Columbia Univ, New York

29

Preceding Pa

Copies

1

—

ge Blank

DIR, Fluid Mech Lab, Univ of California
Berkeley

DIR, Davidson Lab, SIT, Hoboken

DIR, Exptl Nav Tank, Univ of Michigan
Ann Arber

DIR, Inst for Fluid Dyn & App! Math
Univ of Maryland, Coilege Park

DIR, Hydraulic Lab, Univ of Colorado
Boulder

DIR, Scripps Inst of Oceanography, Univ
of Califorria, La Jolla C

DIR, ORL Penn State
DIR, WHO!

0in C, PGSCOL, Webb
1 Prof. Lewis
1 Prof. Ward

DIR, lowa Inst of Hydraulic Res, State
'niv of lowa, lowa City
1 Dr. Landweber

DIR, St. Anthony Falls Hydraulic Lab, Univ
of Minnesota, Minneapolis

Head, NAME, MIT
1 Prof. Abkowitz
1 Prof. Kerwin

Inst for Math & Mech, New York Univ

Dept of Engin, Nav Arch, Univ of California
Berkelev
1 Prof. Wehausen

Hydronautics, Inc, Pindell School Rd
Laurel, Maryland

Dr. Willard J. Pierson, Jr., Coll of Engin
New York Univ

Mr. Robert Taussig, Grad Math Dept
Columbia Univ, New York

Dr. Finn Michelsen, Dept of Nav Arch, Univ
of Michigan, Ann Arbor

#
[



Copies

prof. Richard MacCamy, Camegie Tech, Pittsburgh

Mt. John P. Moran, THERM, Inc, Ithaca, New York

Dr, T.Y. Wu, Hydro Lab, CIT, Pasadena

Dr. Hartley Pond, 14 Elliott Ave, New London, Connecticut
De. . ck Kotik, TRG, Syosset, New York

Prot. Byme Pcrry, Dept of Civil Engin, Stanford Univ
Palo Alto

Prof. B.Y. Korvin-Kioukovsky, East Randolph, Vermont
Prof. L.N. Howard, Dept of Math, MIT, Cambridge

Prof. M. Landahl, Dept of Aero & Astro, MIT, Cambridge
Pres, Oceanics, inc, New York

Mr. Richard Barakat, itek, Boston

J. Ray McCermott Co., Saratoga Bldg., New Oreans

North American Aviation Columbus Div., 4300 E. Fifth Ave.

Celumbus, Ohio

30




SV|OYIIN [ ‘uswmay [
L300y 1 --uonop--{jso1i )
uonN|oAQ2 JO solpoy 3
s1sA|eue [BoNIVWOYIR]y
--uonjopy--efonq Judg - |

‘30UBUOEQL T¥ INIDO

wustxew divys A3oa vsoym oduvs Aouanbas) mo) eyl 20) jdaoxe

sUOlOW 0(qus A[eworixa moys Jopul[Ao re[naud swnonsed v o)

opew suonic|-3[8;) ‘eauvuoses duipnjoul setouanboyy [[v 19 pijwa

suonnjos apiaoxd o paaliap osv sad10) Juidwsp Japio-puodes

Inq *aj0wsip Apoq eyl ul Jepio 363y 01 peduwvpun orw YIIym

POALISp ¥ uotjow jo suoiienbly ‘soAwm Juindai jo eouesed

oY) ut FUYO]} §1 YAy ‘SIXT (9011294 Yiim ‘sonnjoass jo Apog
Jopuols ® Jo suOljow oYy Jo) pedujerop &1 Kioey) pezuwoul] ¥

QAIAISSVIONN "§)0d snjt dog *Al "gg61 Avp -uswmoN ‘NP
£q 'SEAVM HVINDEYH NI A0NG MYdS V 40 SNOLLONW dilL
‘6671 Hodsy ‘uisog |epoyy 40jho g plang

SY[OYIIN °f ‘uvwmoN °[
K00y 1 --uonop--([¥21104)
uoNN{0AS) JO EalpOY ‘g
gisA[vus [¥O1VWO IVl
--uonjop--sfonq reds . 1

‘2IURUOFAI I8 INDDO
vwixvw divys Lioa osoym ofuws Kouanboyy mo| oYy Joj 1dooxe
SUOHOW 8]q¥1E A[oWenxa Moys 10putjAd M N3 Jenonud v 10;
opew suone(nd;v) -eduvuosel Juipnidat setouenbey) |[v 1e piyva
BUOIIN|OR Op1A0Id 0} poALIEp 0% &02J0) Fuidwep 1opIo-pyodas
ng ‘serewwip Apoq oY) ut J0pJo 1531 01 podwvpun 018 Yarym
peALiop o uvolow jo suohenby ‘soawm rendes Jo esuasosd
oy} ut Junvoyy St YIrym 'sixv [9211204 31m ‘DONN|0Al jo Apog
iopyojs v )0 guotow ay; o) pedojoaop st A10aY) pozimoul] v

QAIAISSVIONS "5)e3 **sn(t dog ‘Al g9l Ly -uvwmeN "N'[
Aq *‘SAAVAM HV'INDAY NI X0NH YVJS V 40 SNOLLOW BHL
66p] vodey ‘uisog [spoy 0o} plang

SY[OYIIN ‘p ‘ovmmayn ]
Lxw0q1--uonop--{jvoney)
uorN[oAB) JO BOIPCY 3
sted[suv [vonwweyjujy
--uonojy--skong redg - 'y

*00UNUOE0] 7% JNIDO

vwixew davys K1oa osoym oduvs Louonbal) moy eyy s0) 1dodxo

suonow olquis Ajowosnxo Moys 20putika ¥ (N1 Jendtued w o)

opuw suonvjna[ey) ‘oduvuosal Jurpnjoul satouonbos) [[v 78 prIvA

SUONN]OF 8p1A0Id 0} pOALIdp 0Jv 68030) Butdwep Japlo-pucdes

nq ‘s0t0weip Apoq oY) Ul 18plo 183t 01 podwupun 9Jv YOIYm

poaliep eJv uonow )o suoijenby ‘saawm Jeindai Jo eouasesd

oy ut Futvoyy &1 YoIYm *SIXE {27(JI0A Yim ‘connjoaas jo Apog
Jopuos ¥ Jo suoljow oyy 1o; padojua »; 81 Kioay) pazimesul] Y

QALAISSVTIOND “sjes “'snypt “dog 'at "gesl Loy ‘uswmoN “N°f
Aq ‘SIAVAM HVINDIYU NI A0NY YV I3 V 4O SNOITON AL
‘66pl Hoday uisng [apow so0jdo | pranQ

SVJOYDIN “p ‘UvwmaN ]
K00y ]L--uotioN--([921130 )
uonNnRjoASI JO 8OIPOY ‘3
sysA[vun [Ro1RWOYTeH
--uopjop--8fonq reds . °|

‘@dUvUOf8) 78 INDD0

swixsw divys K39A osoym o8uva Kouenbas) mo| oy Joj 1doaxe

SuOlI0W 0]quIs A13WaNX0 MOYFs Jopul}dd 19[nasid xndIued ¥ Jo)

opeYW SUCNV[ND[Y]: ‘0duBuUOs0l uipn{dul K81ouUendaI) [[u 18 plieA

suonr]  9pracid o; poapep osw sa010) Juidwep Japio-puodes

g ‘e, wY1p APOQ OY) Ul J0pI0 I6IY 07 pedwnpun 818 YIIYm

poALL 0 0% UOLOW Jo suohwnby -seavm v[ndel jo eouosesd

oy n1 Junwoyy 61 YOIy v. ‘S1X¥ [821330A Y1im ‘g0NIN]0A01 Jo Apoq
Jopuo[s v Jo 8uUOIOW eyy 0j pedo[oaop &1 K100Y1 pozinebul] V

QALAISSVIOND "6j32 “anjpy 'dog 'at g9l Avjy -uviwimoN *N'f
Aq ‘SIAYA HVINDAY NI X0N4 YIS ¥ 40 SNOLLOW dHL
"66p) Hodey ‘ujsog |spoy 20jda] pianQ




